
Week 5 Part I
Kyle Dewey

Tuesday, July 24, 12

Overview

• Exam will be back Thursday

• New office hour

• More on functions

• File I/O

• Project #2

Tuesday, July 24, 12

Office Hour

Tuesday, July 24, 12

More on Functions

Tuesday, July 24, 12

Recap...

• Consider a function foo that takes an int
and a char and returns a double

• The function prototype for this looks like:

double foo(int, char);

Tuesday, July 24, 12

Recap...

• Consider a function foo that takes an int
and a char and returns a double

• Lets say it adds them and multiplies the
result by 2.5

• The function definition looks like:

double foo(int x, char y) {
 return (x + y) * 2.5;
}

Tuesday, July 24, 12

Questions

• Why are function prototypes needed?

• Where do function prototypes go?

Tuesday, July 24, 12

Relationship to
Variables

• Many similarities

• Variable declaration shares similarities to
function prototypes

• Sometimes called function declaration

double foo(int, char);
int bar;
...

Tuesday, July 24, 12

Relationship to
Variables

• Function declaration (function prototypes)
are like variable declaration

• Function definition is like variable
initialization

• Though the values (i.e. the function
definitions) can never be changed

Tuesday, July 24, 12

Relationship to
Variables

• Function names have the same rules as
variable names (i.e. can’t start with a
number, etc.)

• Can actually have variables that hold
pointers to functions

Tuesday, July 24, 12

Definition and Use

• Function prototypes go at the top of a file

• Function definitions can be anywhere in a
file

Tuesday, July 24, 12

#include <stdio.h>
int min(int, int);
int main();
int min(int x, int y) {
 if (x < y)
 return x;
 else
 return y;
}
int main() {
 int a, b;
 scanf(“%i %i”, &a, &b);
 printf(“%i\n”, min(a, b));
 return 0;
}

Tuesday, July 24, 12

Calling a Function

• To make a function do work, we must call
it

• A function call is not the same as a
function definition

• A function can be defined only once

• A function can be called as many times as
we want

• Building a car versus driving a car

Tuesday, July 24, 12

Function Call Semantics
• Say we have the following function

definition:

int min(int x, int y) {
 if (x < y)
 return x;
 else
 return y;
}

Tuesday, July 24, 12

Function Call Semantics

• Say we call this function like so:

int min(int x, int y) {
 if (x < y)
 return x;
 else
 return y;
}

int main() {
 int z = min(5, 6);
}

Tuesday, July 24, 12

Function Call Semantics

• Semantically, this is equivalent to:

int main() {
 // int z = min(5, 6);
 int z;
 int x = 5;
 int y = 6;
 if (x < y)
 z = x;
 else
 z = y;
}

Tuesday, July 24, 12

Key Insight

• Function parameters are treated just like
variables being declared and initialized

int main() {
 // int z = min(5, 6);
 int z;
 int x = 5;
 int y = 6;
 if (x < y)
 z = x;
 else
 z = y;
}

Tuesday, July 24, 12

One Property

• Function arguments are copies of what
was passed, not what was passed itself

• This is called “call-by-value”

Tuesday, July 24, 12

Call-by-Value

void changeIt(int x) {
 x = 10;
}

int main() {
 int y = 1;
 changeIt(y);
 // what does y equal?
}

Tuesday, July 24, 12

Call-by-Value
void changeIt(int x) {
 x = 10;
}

int main() {
 int y = 1;
 // changeIt(y)
 int x = 10;
 // what does y equal?
}

Tuesday, July 24, 12

Back to scanf

• scanf needs the addresses of the
variables that will hold what was read in

• This is precisely because of call-by-value

• We want to change the value of the
variable itself, not a copy of the variable

Tuesday, July 24, 12

Key Insight

• Function parameters are treated just like
variables being declared and initialized

int main() {
 // int z = min(5, 6);
 int z;
 int x = 5;
 int y = 6;
 if (x < y)
 z = x;
 else
 z = y;
}

Tuesday, July 24, 12

A Second Property

• Type coercion occurs

int asInt(double x) {
 return x;
}

int main() {
 int y = asInt(5.5);
}

Tuesday, July 24, 12

A Second Property
• Type coercion occurs

int asInt(double x) {
 return x;
}

int main() {
 // int y = asInt(5.5);
 double x = 5.5;
 int y = x;
}

Tuesday, July 24, 12

Function Inputs /
Outputs

• When a function takes a value, the value
is an input (parameter / argument)

• The function’s return value is whatever
the function returned (an output)

• void functions do not return values

Tuesday, July 24, 12

Function Calls

• For non-void functions, a function call acts
like an expression

• The function call returns whatever the
output of the function was

Tuesday, July 24, 12

Function Calls

int max(int x, int y) {
 if (x > y)
 return x;
 else
 return y;
}

int main() {
 int y = max(4, 5) * 7 + 3;
}

Tuesday, July 24, 12

Function parameters
vs. scanf

• Reading in an input (scanf) is not the
same as taking a parameter

• scanf: get an input from the user

• Parameter: get an input from within the
program

• The parameter approach is far more
flexible

Tuesday, July 24, 12

int max(int x, int y) {
 if (x > y)
 return x;
 else
 return y;
}

int maxScanf() {
 int x, y;
 scanf(“%i %i”, &x, &y);
 if (x > y)
 return x;
 else
 return y;
}

Tuesday, July 24, 12

int max(int x, int y) {
 if (x > y)
 return x;
 else
 return y;
}

int maxScanf() {
 int x, y;
 scanf(“%i %i”, &x, &y);
 return max(x, y);
}

Tuesday, July 24, 12

Function Outputs

• Printing out an output (printf) is not
the same as returning a value

• printf: print to the user via a terminal

• Returning: output a value wherever the
function is called

• Returning is far more flexible

Tuesday, July 24, 12

int max(int x, int y) {
 if (x > y)
 return x;
 else
 return y;
}

void maxPrintf(int x, int y) {
 if (x > y)
 printf(“%i\n”, x);
 else
 printf(“%i\n”, y);
}

Tuesday, July 24, 12

int max(int x, int y) {
 if (x > y)
 return x;
 else
 return y;
}

void maxPrintf(int x, int y) {
 printf(“%i\n”, max(x, y));
}

Tuesday, July 24, 12

Flexibility

• Functions are far more reusable than
printf / scanf

• Input / output can be changed later

• printf / scanf always refer to the
terminal

Tuesday, July 24, 12

Example

• We want to define a function that takes the
max of 4 integers

• First with scanf / printf

Tuesday, July 24, 12

void max2() {
 int a, b;
 scanf(“%i %i”, &a, &b);
 if (a > b)
 printf(“%i\n”, a);
 else
 printf(“%i\n”, b);
}

Tuesday, July 24, 12

void max4() {
 int a, b, c, d;
 scanf(“%i %i %i %i”,
 &a, &b, &c, &d);
 if (a >= b && a >= c && a >= d)
 printf(“%i\n”, a);
 else if (b >= a && b >= c && b >= d)
 printf(“%i\n”, b);
 else if (c >= a && c >= b && c >= d)
 printf(“%i\n”, c);
 else
 printf(“%i\n”, d);
}

Tuesday, July 24, 12

Example

• We want to define a function that takes the
max of 4 integers

• Now with parameters / return values

Tuesday, July 24, 12

int max2(int a, int b) {
 if (a > b)
 return a;
 else
 return b;
}

void max2() {
 int a, b;
 scanf(“%i %i”, &a, &b);
 if (a > b)
 printf(“%i\n”, a);
 else
 printf(“%i\n”, b);
}

Tuesday, July 24, 12

int max4(int a, int b, int c, int d) {
 return max2(max2(a, b),
 max2(c, d));
}

Tuesday, July 24, 12

Code Difference

• Using printf / scanf: 21 lines

• Without printf / scanf: 10 lines

• Plus it’s more flexible

• Can be adapted to behave just like with
printf / scanf with fewer lines!

Tuesday, July 24, 12

The main Function

• Entry point for code outside of ch

• This function is called with command line
arguments

• Should return 0 on program success, or
return <nonzero> on program failure

Tuesday, July 24, 12

Command Line
Arguments

• The arguments specified to a program on
the command line

• For example:

•emacs foo.txt

• foo.txt is a command-line argument
to emacs

Tuesday, July 24, 12

int max(int, int);
int main(int argc, char** argv);

int main(int argc, char** argv) {
 printf(“%i\n”, max(5, 2));
 return 0;
}

int max(int x, int y) {
 if (x > y)
 return x;
 else
 return y;
}

Tuesday, July 24, 12

File Input / Output

Tuesday, July 24, 12

File I/O

• Many programs manipulate files

• cat: read a file

• emacs: read & write to a file

• cp: read from one file (source) and write
to another (destination)

Tuesday, July 24, 12

Terminal vs. Files

• Reading to / writing from either is very
similar

• Main difference: files stay on the system, but
terminal output does not usually stay

• i.e. when you close the window, the files
remain but the terminal output’s gone

Tuesday, July 24, 12

Terminal vs. Files

• The following functions behave on files:

•fscanf

•fprintf

•getc

•putc

• Sound familiar?

Tuesday, July 24, 12

Difference

• These functions also require where they
are reading from / writing to

• printf always writes to the terminal,
but fprintf can write anywhere

• scanf always reads from the terminal,
but fscanf can read anywhere

Tuesday, July 24, 12

printf Revisited

• Technically, printf does not write to the
terminal

• It writes to stdout (standard output)

• stdout is usually (but not always!) the
terminal

printf stdout Terminal

Tuesday, July 24, 12

printf / fprintf

• These snippets do the exact same thing

printf(“hello”);
...
fprintf(stdout, “hello”);

Tuesday, July 24, 12

scanf Revisited

• Technically, scanf does not read from the
terminal

• It reads from stdin (standard input)

• stdin is usually (but not always!) the
terminal

scanf stdin Terminal

Tuesday, July 24, 12

scanf / fscanf

• These snippets do the exact same thing

int x;
scanf(“%i”, &x);
...
int x;
fscanf(stdin, “%i”, &x);

Tuesday, July 24, 12

getc / putc

• More equivalences

int c = getchar();
...
int c = getc(stdin);

putchar(‘a’);
...
putc(‘a’, stdout);

Tuesday, July 24, 12

stdin / stdout

• These are file pointers of type FILE*

• All these functions take file pointers

Tuesday, July 24, 12

fopen

• Your own file pointers can be made by
opening a file

• fopen is the tool for this

FILE* file = fopen(“file.txt”, “r”);
fprintf(file, “Hello”);
...

Tuesday, July 24, 12

fopen

• First argument: the name of the file to open

• Second argument: what to open the file for

• “r”: read only. File must exist.

• “w”: write only. If a file with the same
name already exists it will be deleted and
overwritten.

• Return value: file pointer, or the special
constant NULL if failure occurs

Tuesday, July 24, 12

fclose

• When done with a file, call fclose on it

• Note that operations can be performed
only on open files

• If files aren’t open, the operations fail

FILE* file = fopen(“file.txt”, “r”);
fprintf(file, “Hello”);
fclose(file);

Tuesday, July 24, 12

makeHelloFile.c,
catHelloFile.c

Tuesday, July 24, 12

Techniques for Reading

• The data may need to be formatted in a
certain way

• i.e. if we read in a dictionary of words,
how do we know when one word ends
and another begins? When we are out of
words? How many words there are?

Tuesday, July 24, 12

Techniques for Reading

• We could specify the number of words
beforehand

• We could separate each word by a letter
that is in no word (such as a newline)

• Could end the words with some special
non-word identifier

• Files all end with the special character EOF
(end of file)

Tuesday, July 24, 12

Techniques for Reading

3
foo
bar
baz
;;;

Tuesday, July 24, 12

Techniques for Reading

• For more examples, see the additional
materials

• p3_4.c, p3_5.c (with corresponding
sensor1.txt), p3_6.c (with
corresponding sensor2.txt),
p3_7.c (with corresponding
sensor3.txt), p3_8.c (with
corresponding waves.txt)

Tuesday, July 24, 12

Project #2

Tuesday, July 24, 12

