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Overview

• Exam will be back Thursday

• New office hour

• More on functions

• File I/O

• Project #2
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Office Hour
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More on Functions
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Recap...

• Consider a function foo that takes an int 
and a char and returns a double

• The function prototype for this looks like:

double foo( int, char );
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Recap...

• Consider a function foo that takes an int 
and a char and returns a double

• Lets say it adds them and multiplies the 
result by 2.5

• The function definition looks like:

double foo( int x, char y ) {
  return ( x + y ) * 2.5;
}
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Questions

• Why are function prototypes needed?

• Where do function prototypes go?
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Relationship to 
Variables

• Many similarities

• Variable declaration shares similarities to 
function prototypes

• Sometimes called function declaration

double foo( int, char );
int bar;
...
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Relationship to 
Variables

• Function declaration (function prototypes) 
are like variable declaration

• Function definition is like variable 
initialization

• Though the values (i.e. the function 
definitions) can never be changed
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Relationship to 
Variables

• Function names have the same rules as 
variable names (i.e. can’t start with a 
number, etc.)

• Can actually have variables that hold 
pointers to functions

Tuesday, July 24, 12



Definition and Use

• Function prototypes go at the top of a file

• Function definitions can be anywhere in a 
file
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#include <stdio.h>
int min( int, int );
int main();
int min( int x, int y ) {
  if ( x < y ) 
    return x;
  else 
    return y;
}
int main() {
  int a, b;
  scanf( “%i %i”, &a, &b );
  printf( “%i\n”, min( a, b ) );
  return 0;
}
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Calling a Function

• To make a function do work, we must call 
it

• A function call is not the same as a 
function definition

• A function can be defined only once

• A function can be called as many times as 
we want

• Building a car versus driving a car
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Function Call Semantics
• Say we have the following function 

definition:

int min( int x, int y ) {
  if ( x < y ) 
    return x;
  else 
    return y;
}
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Function Call Semantics

• Say we call this function like so:

int min( int x, int y ) {
  if ( x < y ) 
    return x;
  else 
    return y;
}

int main() {
  int z = min( 5, 6 );
}
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Function Call Semantics

• Semantically, this is equivalent to:

int main() {
  // int z = min( 5, 6 );
  int z;
  int x = 5;
  int y = 6;
  if ( x < y ) 
    z = x;
  else 
    z = y;
}
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Key Insight

• Function parameters are treated just like 
variables being declared and initialized

int main() {
  // int z = min( 5, 6 );
  int z;
  int x = 5;
  int y = 6;
  if ( x < y ) 
    z = x;
  else 
    z = y;
}
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One Property

• Function arguments are copies of what 
was passed, not what was passed itself

• This is called “call-by-value”
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Call-by-Value

void changeIt( int x ) {
  x = 10;
}

int main() {
  int y = 1;
  changeIt( y );
  // what does y equal?
}
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Call-by-Value
void changeIt( int x ) {
  x = 10;
}

int main() {
  int y = 1;
  // changeIt( y )
  int x = 10;
  // what does y equal?
}
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Back to scanf

• scanf needs the addresses of the 
variables that will hold what was read in

• This is precisely because of call-by-value

• We want to change the value of the 
variable itself, not a copy of the variable
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Key Insight

• Function parameters are treated just like 
variables being declared and initialized

int main() {
  // int z = min( 5, 6 );
  int z;
  int x = 5;
  int y = 6;
  if ( x < y ) 
    z = x;
  else 
    z = y;
}
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A Second Property

• Type coercion occurs

int asInt( double x ) {
  return x;
}

int main() {
  int y = asInt( 5.5 );
}
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A Second Property
• Type coercion occurs

int asInt( double x ) {
  return x;
}

int main() {
  // int y = asInt( 5.5 );
  double x = 5.5;
  int y = x;
}
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Function Inputs / 
Outputs

• When a function takes a value, the value 
is an input (parameter / argument)

• The function’s return value is whatever 
the function returned (an output)

• void functions do not return values
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Function Calls

• For non-void functions, a function call acts 
like an expression

• The function call returns whatever the 
output of the function was
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Function Calls

int max( int x, int y ) {
  if ( x > y ) 
    return x;
  else
    return y;
}

int main() {
  int y = max( 4, 5 ) * 7 + 3;
}
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Function parameters 
vs. scanf

• Reading in an input (scanf) is not the 
same as taking a parameter

• scanf: get an input from the user

• Parameter: get an input from within the 
program

• The parameter approach is far more 
flexible
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int max( int x, int y ) {
  if ( x > y ) 
    return x;
  else
    return y;
}

int maxScanf() {
  int x, y;
  scanf( “%i %i”, &x, &y );
  if ( x > y ) 
    return x;
  else
    return y;
}
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int max( int x, int y ) {
  if ( x > y ) 
    return x;
  else
    return y;
}

int maxScanf() {
  int x, y;
  scanf( “%i %i”, &x, &y );
  return max( x, y );
}
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Function Outputs

• Printing out an output (printf) is not 
the same as returning a value

• printf: print to the user via a terminal

• Returning: output a value wherever the 
function is called

• Returning is far more flexible
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int max( int x, int y ) {
  if ( x > y ) 
    return x;
  else
    return y;
}

void maxPrintf( int x, int y ) {
  if ( x > y ) 
    printf( “%i\n”, x );
  else
    printf( “%i\n”, y );
}
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int max( int x, int y ) {
  if ( x > y ) 
    return x;
  else
    return y;
}

void maxPrintf( int x, int y ) {
  printf( “%i\n”, max( x, y ) );
}
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Flexibility

• Functions are far more reusable than 
printf / scanf

• Input / output can be changed later

• printf / scanf always refer to the 
terminal
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Example

• We want to define a function that takes the 
max of 4 integers

• First with scanf / printf
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void max2() {
  int a, b;
  scanf( “%i %i”, &a, &b );
  if ( a > b ) 
    printf( “%i\n”, a );
  else
    printf( “%i\n”, b );
}
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void max4() {
  int a, b, c, d;
  scanf( “%i %i %i %i”, 
         &a, &b, &c, &d );
  if ( a >= b && a >= c && a >= d ) 
    printf( “%i\n”, a );
  else if ( b >= a && b >= c && b >= d )
    printf( “%i\n”, b );
  else if ( c >= a && c >= b && c >= d )
    printf( “%i\n”, c );
  else
    printf( “%i\n”, d );
}
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Example

• We want to define a function that takes the 
max of 4 integers

• Now with parameters / return values
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int max2( int a, int b ) {
  if ( a > b ) 
    return a;
  else
    return b;
}

void max2() {
  int a, b;
  scanf( “%i %i”, &a, &b );
  if ( a > b ) 
    printf( “%i\n”, a );
  else
    printf( “%i\n”, b );
}
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int max4( int a, int b, int c, int d ) {
  return max2( max2( a, b ),
               max2( c, d ) );
}
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Code Difference

• Using printf / scanf: 21 lines

• Without printf / scanf: 10 lines

• Plus it’s more flexible

• Can be adapted to behave just like with 
printf / scanf with fewer lines!
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The main Function

• Entry point for code outside of ch

• This function is called with command line 
arguments

• Should return 0 on program success, or 
return <nonzero> on program failure
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Command Line 
Arguments

• The arguments specified to a program on 
the command line

• For example:

•emacs foo.txt

• foo.txt is a command-line argument 
to emacs
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int max( int, int );
int main( int argc, char** argv );

int main( int argc, char** argv ) {
  printf( “%i\n”, max( 5, 2 ) );
  return 0;
}

int max( int x, int y ) {
  if ( x > y )
    return x;
  else 
    return y;
}
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File Input / Output
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File I/O

• Many programs manipulate files

• cat: read a file 

• emacs: read & write to a file

• cp: read from one file (source) and write 
to another (destination)
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Terminal vs. Files

• Reading to / writing from either is very 
similar

• Main difference: files stay on the system, but 
terminal output does not usually stay

• i.e. when you close the window, the files 
remain but the terminal output’s gone
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Terminal vs. Files

• The following functions behave on files:

•fscanf

•fprintf

•getc

•putc

• Sound familiar?
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Difference

• These functions also require where they 
are reading from / writing to

• printf always writes to the terminal, 
but fprintf can write anywhere

• scanf always reads from the terminal, 
but fscanf can read anywhere
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printf Revisited

• Technically, printf does not write to the 
terminal

• It writes to stdout (standard output)

• stdout is usually (but not always!) the 
terminal

printf stdout Terminal
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printf / fprintf

• These snippets do the exact same thing

printf( “hello” );
...
fprintf( stdout, “hello” );
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scanf Revisited

• Technically, scanf does not read from the 
terminal

• It reads from stdin (standard input)

• stdin is usually (but not always!) the 
terminal

scanf stdin Terminal
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scanf / fscanf

• These snippets do the exact same thing

int x;
scanf( “%i”, &x );
...
int x;
fscanf( stdin, “%i”, &x );
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getc / putc

• More equivalences

int c = getchar();
...
int c = getc( stdin );

putchar( ‘a’ );
...
putc( ‘a’, stdout );

Tuesday, July 24, 12



stdin / stdout

• These are file pointers of type FILE*

• All these functions take file pointers
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fopen

• Your own file pointers can be made by 
opening a file

• fopen is the tool for this

FILE* file = fopen( “file.txt”, “r” );
fprintf( file, “Hello” );
...

Tuesday, July 24, 12



fopen

• First argument: the name of the file to open

• Second argument: what to open the file for

• “r”: read only.  File must exist.

• “w”: write only. If a file with the same 
name already exists it will be deleted and 
overwritten.

• Return value: file pointer, or the special 
constant NULL if failure occurs
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fclose

• When done with a file, call fclose on it

• Note that operations can be performed 
only on open files

• If files aren’t open, the operations fail

FILE* file = fopen( “file.txt”, “r” );
fprintf( file, “Hello” );
fclose( file );
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makeHelloFile.c, 
catHelloFile.c
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Techniques for Reading

• The data may need to be formatted in a 
certain way

• i.e. if we read in a dictionary of words, 
how do we know when one word ends 
and another begins? When we are out of 
words? How many words there are?
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Techniques for Reading

• We could specify the number of words 
beforehand

• We could separate each word by a letter 
that is in no word (such as a newline)

• Could end the words with some special 
non-word identifier

• Files all end with the special character EOF 
(end of file)
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Techniques for Reading

3
foo
bar
baz
;;;
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Techniques for Reading

• For more examples, see the additional 
materials

• p3_4.c, p3_5.c (with corresponding 
sensor1.txt), p3_6.c (with 
corresponding sensor2.txt), 
p3_7.c (with corresponding 
sensor3.txt), p3_8.c (with 
corresponding waves.txt)
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Project #2
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